Week 4, lecture 2: Chinese Remainder Theorem. PPSn: examples MA180/185/190 Algebra

Angela Carnevale



**Chinese Remainder Theorem** 

More on prime numbers

## Simultaneous congruences

#### **Recall one of our challenges from the first lectures:**

There are certain things whose number is unknown. If we count them by threes, we have two left over; by fives, we have three left over; and by sevens, two are left over. How many things are there?

In the language of modular arithmetic: Find x such that **all** of the following hold:

 $\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$ 

**Remark.** We noted that if there is a solution, say  $x_0$ , then there are infinitely many solutions since  $x_0 + 3 \cdot 5 \cdot 7 \cdot n = x_0 + 105n$  would then be a solution for all  $n \in \mathbb{Z}$ .

# A simpler version

We looked at a simpler version by first solving the following two simultaneous congruences: namely, we found x such that, **both of the following** are satisfied:

 $x \equiv 2 \pmod{3}$  and  $x \equiv 3 \pmod{5}$ . (\*)

**Idea.** First find a number that solves the first equation and that is 0 (mod 5), then find a number that is 0 (mod 3) but solves the second equation. Then add them up to get an x that solves them both at once.

How to achieve this? If, say, we want a number that is 2 (mod 3) and 0 (mod 5), we take 2 itself, and multiply it by  $5 \cdot x$  where x is such that  $5x \equiv 1 \pmod{3}$ . After doing this for both congruences, the solution we found was:

 $x_0 = 5 \cdot 2 \cdot 2 + 3 \cdot 3 \cdot 2 = 20 + 18 = 38$ 

## Solution to our challenge

Strakey: look for 3 integers:  

$$x \equiv 2 \pmod{3} \qquad (1 - 0 \text{ one that } is \equiv 2 \pmod{3} \text{ and } \equiv 0 \pmod{5} \text{ and} prod_{1} prod_{$$

### Solution to our challenge

 $\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$ (3) New & such that 3.5.X = 1 (mod 7) 15× =1 (mod 7) Since 15=1 (mod 7) we get that x = 1 is a solution here too So the last bit of our solution is 3.5.1.2 Last step: add them all up, and allow for further multiples of 105 to be added too. The general solution looks as follows: X = 5.7.2.2 + 3.7.1.3 + 3.5.1.2 + 105.n= 140 + 63 + 30 + 105 n= 233 + 105 n

## Solution to our challenge

## **Chinese Remainder Theorem**

#### The formal theorem is as follows

#### **Chinese Remainder Theorem**

Let  $n_1$ ,  $n_2$  and  $n_3$  be positive integers pairwise coprime. Let  $a_1$ ,  $a_2$  and  $a_3$  be any integers. Then the following system of congruences

$$\begin{cases} x \equiv a_1 \pmod{n_1} \\ x \equiv a_2 \pmod{n_2} \\ x \equiv a_3 \pmod{n_3} \end{cases}$$

can be solved.

### **Chinese Remainder Theorem**

To find a solution, we first solve three auxiliary linear congruences:

- ▶  $n_2n_3x \equiv 1 \pmod{n_1} \rightarrow \text{solution: } d_1$
- ▶  $n_1n_3x \equiv 1 \pmod{n_2} \rightarrow \text{solution: } d_2$
- ▶  $n_1n_2x \equiv 1 \pmod{n_3} \rightarrow \text{solution: } d_3$

We then combine them to find a general solution of the form:

 $x = a_1 \cdot d_1 \cdot (n_2 n_3) + a_2 \cdot d_2 \cdot (n_1 n_3) + a_3 \cdot d_3 \cdot (n_1 n_2) + (n_1 n_2 n_3)t$ 

where  $t \in \mathbb{Z}$ .

## New challenge! (hard)

**Problem.** Three comets **A**, **B** and **C** are known to have orbital periods of 3, 8 and 13 years, respectively. They have last been seen in their perihelia (=point on their orbit closest to our Sun) in years 2020, 2021 and 2021, respectively. When will all of them in their perihelia in the same year next?

**Hint.** The year of the last observation (modulo the orbital period of the corresponding comet) will give you the right-hand sides of the three congruences that should be simultaneously satisfied. From that, just apply the strategy on the previous slide.

### **Back to PPSn**

**Example.** Find the missing digit in the following PPSn: 12109x4GH.

 $7 \equiv 8 \cdot 1 + 7 \cdot 2 + 6 \cdot 1 + 5 \cdot 0 + 4 \cdot 9 + 3 \times + 2 \cdot 4 + 9 \cdot 8 \quad (mod 23)$   $7 \equiv 8 + 14 + 6 + 36 + 3 \times + 8 + 72 \quad (mod 23) \quad pole: 36 \equiv 13 \pmod{23}$  $7 \equiv 8 + 14 + 6 + 13 + 3 \times + 8 + 3 \quad (mod 23) \quad 72 \equiv 3 \pmod{23}$ 

$$0 \equiv 45 + 3 \times (m = d 23)$$

Want to solve:  $3x \equiv -45 \pmod{23}$  note:  $-45 \equiv -22 \equiv 1 \pmod{23}$ To want to find  $3^{-1} \pmod{23}$ Euclid:  $23 \equiv 3 \cdot 7 + 2$  backwards:  $1 \equiv 3 + 2 \cdot (-1)$   $3 \equiv 2 \cdot 1 + 1$   $= 3 + (23 - 3 \cdot 7)(-1)$   $\equiv 23 \cdot (-1) + 3 \cdot 8$ To  $3^{-1} \equiv 8 \mod{23} = 7$   $\times = 8$ 

### Next week

- More on prime/coprime numbers
- Powers modulo a number
- Cryptography!